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ABSTRACT

A new algorithm for modeling radiative transfer in inhomogeneous three-dimensional media is described. The
spherical harmonics discrete ordinate method uses a spherical harmonic angular representation to reduce memory
use and time computing the source function. The radiative transfer equation is integrated along discrete ordinates
through a spatial grid to model the streaming of radiation. An adaptive grid approach, which places additional
points where they are most needed to improve accuracy, is implemented. The solution method is a type of
successive order of scattering approach or Picard iteration. The model computes accurate radiances or fluxes in
either the shortwave or longwave regions, even for highly peaked phase functions. Broadband radiative transfer
is computed efficiently with a k distribution. The results of validation tests and examples illustrating the efficiency
and accuracy of the algorithm are shown for simple geometries and realistic simulated clouds.

1. Introduction

Observations (e.g., Harrison et al. 1990) have con-
firmed that clouds have a large impact on the radiative
energy flows in the atmosphere. Besides the problem of
predicting the distribution of cloud properties, one dif-
ficulty in modeling radiative transfer in clouds has been
the ubiquitous inhomogeneity of clouds. Almost no
cloud fields on Earth are horizontally uniform, which
is the assumption of plane-parallel models that are the
mainstay of atmospheric radiative transfer. Modeling
studies have shown that inhomogeneity effects are sig-
nificant even in overcast clouds (Cahalan et al. 1994)
and potentially large in broken cloud fields (e.g, Welch
and Wielicki 1984; Barker and Davies 1992). Thus there
is a need for 3D radiative transfer models to serve as
numerical tools for understanding these inhomogeneity
effects, parameterizing their effects in climate models,
and correcting for their effects in remote sensing in-
versions.

The atmospheric science community has been de-
veloping 3D radiative transfer models for over two de-
cades. The reason that this area of modeling is still the
subject of ongoing research is because it is so compu-
tationally demanding. Solving the radiative transfer
equation in a 3D medium is a 5D (three space, two
angle) boundary value problem. There are still needs

Corresponding author address: Frank Evans, Campus Box 311,
University of Colorado, Boulder, CO. 80309.
E-mail: evans@nit.colorado.edu

for computationally efficient, accurate, and flexible 3D
models.

The first and most common type of radiative transfer
model used to study 3D cloud effects has been the Monte
Carlo method (e.g., Marchuk et al. 1980). This method,
which can be thought of as simulating photon paths in
the medium, has a reputation as being rather slow for
results with good accuracy. The alternatives to Monte
Carlo methods are those methods (such as the one de-
scribed here) that explicitly represent the radiance field
in the computational domain. This class of model is the
standard for plane-parallel transfer. Gabriel et al. (1993)
contains an overview of some of these types of 3D
methods. Monte Carlo methods are generally more ef-
ficient than explicit methods when relatively few quan-
tities need to be computed. For example, to compute
the domain average reflected and transmitted solar flux,
a Monte Carlo calculation with 100 000 photons will
often suffice, which would be faster than an explicit
radiative transfer method for a 3D medium. On the other
hand, if many quantities, such as an image of upwelling
radiances from the domain top or the 3D distribution of
heating rate, are needed, then an explicit method can
be much faster than Monte Carlo methods. For explicit
methods, since the whole radiance field is computed,
any desired radiative quantity may be computed at little
extra cost. For Monte Carlo methods, either many more
photons or successive calculations are required for more
output quantities. Monte Carlo methods will always use
much less memory. The exact cross-over point in com-
putational speed between Monte Carlo and explicit
methods depends on the particular problem being solved
and the models used.
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There are many hopelessly inefficient ways to com-
pute 3D radiative transfer. Focusing on the general, com-
putationally efficient methods, we find that they all rep-
resent the spatial variation of the radiance field with a
grid, rather than spectrally. There are methods with dis-
crete ordinate representation of the angular aspects of
the radiance field, such as the discrete ordinate method
(DOM) or SN method (e.g., Gerstl and Zardecki 1985;
Sanchez et al. 1994) or others (Kuo et al. 1996). Other
methods use a spectral approach for the angular part of
the field, such as the spherical harmonic spatial grid
(SHSG) method (Evans 1993). The method described
here is an outgrowth of SHSG, combining aspects of
discrete ordinate methods, using a new solution method,
and implemented in 3D.

The spherical harmonics discrete ordinate method
(SHDOM) uses both spherical harmonics and discrete
ordinates to represent the radiance field during different
parts of the solution algorithm. The spherical harmonics
are employed for computing the source function in-
cluding the scattering integral. The discrete ordinates
are used to integrate the radiative transfer equation spa-
tially. One innovation is that the discrete grid, which
represents the spatial variation of the fields, is adaptive,
so that extra resolution is provided where needed. The
solution method is simply iterating between the source
function and radiance field, which amounts to a suc-
cessive order of scattering approach [or a Picard iter-
ation (Kuo et al. 1996)].

The model can perform 1D, 2D, or 3D unpolarized
radiative transfer with general medium properties (ex-
tinction, phase function, etc., varying arbitrarily). The
angular and spatial resolution may be specified, which
allows the trade-off between calculation speed and ac-
curacy to be explored. The modeled transfer may be
monochromatic or broadband (with a k distribution), and
the source of radiation may be collimated solar and/or
thermal emission. The lower boundary surface may have
spatially varying albedo or temperature and a general
bidirectional reflectance function can be specified. The
horizontal boundary conditions may be either periodic
or open. The model output consists of radiance, hemi-
spheric flux, net flux, or net flux convergence at desired
locations. Standard methods are used to compute ac-
curate upwelling solar reflection with highly peaked
phase functions. The model is freely available to the
scientific community.

This paper gives an overview of the SHDOM algo-
rithm (section 2), shows test results to validate the mod-
el’s correctness (section 3), and illustrates the perfor-
mance and how best to use the model (section 4). The
details of the algorithm are described in the appendix.

2. SHDOM algorithm

a. Representation of the radiation field

The primary novel aspect of SHDOM is to combine
aspects of the spherical harmonic and discrete ordinate

representations of the radiation field. As with the SHSG
method (Evans 1993), the radiance field is represented
on a discrete grid and the spherical harmonic represen-
tation is used to compute the scattering integral quickly.
SHDOM, however, solves the integral form of the ra-
diative transfer equation, computing radiance from the
source function along discrete ordinates throughout the
grid. This more physical simulation of radiation stream-
ing along discrete ordinates was found to be more ac-
curate and efficient than the purely spherical harmonic
approach of SHSG, especially for nonscattering portions
of the domain (e.g., clear air). SHDOM is generally
superior in performance to SHSG, which only computes
2D transfer and is not implemented for general use by
the scientific community.

If the discrete ordinate representation is best for rep-
resenting the streaming of radiation, why use spherical
harmonics at all? One reason is that the scattering in-
tegral in the radiative transfer equation may be more
efficiently computed using spherical harmonics. As long
as scattering depends only on the scattering angle, the
scattering integral source function in spherical harmonic
space reduces to simple multiplication:

vxlscatJ 5 I , (1)lm lm2l 1 1

where Ilm are the radiance spherical harmonic coeffi-
cients, xl are the Legendre phase function coefficients,
and v is the single-scattering albedo. Hence the scat-
tering integral may be computed very quickly (of order
N operations). Of course, transforms between the spher-
ical harmonic space discrete ordinate representations are
required to take advantage of both. The partial sepa-
ration of the azimuthal and zenith angle parts of the
transforms results in the forward and backward trans-
forms together taking approximately 9N 3/2 operations
(see appendix). This compares with 2N 2 operations for
a purely discrete ordinate representation, where N is the
number of discrete ordinates.

Rather than storing the radiance field, SHDOM stores
the source function as a spherical harmonic series at
each grid point. Solving for the source function is equiv-
alent to solving for the radiance field, because radiance
may be derived by integrating the source function in the
radiative transfer equation. Another advantage of the
spherical harmonic representation is that less storage is
required as compared with a purely discrete ordinate
approach. An adaptive spherical harmonic truncation is
implemented so that the order of the series varies with
grid point. This new approach can save considerable
computer memory when parts of the domain have a
source function that is zero (e.g., no scattering for solar
problems) or smooth (thermal emission, scattering in-
side optically thick media), for which only a few terms
are required.

The source function and radiance are defined on dis-
crete grid points. This representation is far more efficient
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FIG. 1. A flowchart of the SHDOM algorithm. The four-step itera-
tion that is the core of the algorithm is shown in large letters.

than a spectral approach (see, e.g., Evans 1993), because
the streaming of radiation is inherently local. In addi-
tion, an adaptive discrete grid is implemented. This ap-
proach, which is believed to be original for radiative
transfer models, allows extra spatial resolution to be
supplied only where needed. In the computational fluid
dynamics literature (e.g., Melton et al. 1995) this ap-
proach is called adaptive mesh refinement with an un-
structured Cartesian grid. A regular ‘‘base grid’’ is de-
fined at the start, but as the iterative solution method
proceeds, grid cells may be split in half to achieve higher
spatial resolution. The criterion for dividing a grid cell
is based on the change in source function across a cell.
Extra cells may be split to make a ‘‘smoother’’ adaptive
grid, so there are not large discontinuities in the grid.
A tree data structure is used to keep track of the grid
cells (volumes) and grid points so that neighboring cells
can be located. The following sections illustrate the
adaptive grid, and details are in the appendix.

The medium properties (extinction, single-scattering
albedo, Legendre series of the phase function, and tem-
perature) may be specified at every grid point of the
‘‘property grid.’’ For 3D media with complex phase
functions, however, just the specification of the phase
function may overwhelm available memory. Therefore
a limited size table of phase functions may be input
(e.g., as a function of effective radius) with each grid
point having an index to specify which phase function.

b. Solution method

The solution method is a Picard iteration, or L iter-
ation in the astrophysical literature (Stenholm et al.
1991). Each iteration consists of four steps in which

1) the spherical harmonics source function is trans-
formed to discrete ordinates,

2) the source function is integrated to obtain the radi-
ance field,

3) the radiance field is transformed to spherical har-
monics, and

4) the source function is computed from the radiance
field in spherical harmonics.

A flowchart illustrating the major components of the
algorithm is shown in Fig. 1.

The second step is to use the integral form of the
radiative transfer equation,

s

I(s) 5 exp 2 k(s9) ds9 I(0)E[ ]
0

s s

1 exp 2 k(t) dt J(s9)k(s9) ds9, (2)E E[ ]
0 s9

to calculate the radiance I along discrete ordinates from
the source function J. The extinction k and the product
of the extinction and source function (Jk) are assumed
to vary linearly with distance s across a grid cell. The

source function is integrated backward along a discrete
ordinate from each grid point to a grid cell face that has
known radiances at its bounding grid points; usually
this is across just one grid cell. The radiance is inter-
polated between the surrounding grid points using bi-
linear interpolation to give the initial radiance for the
integration. The extinction and source function product
(Jk) are also bilinearly interpolated to the entrance point.

The integration in (2) is approximated for k and Jk
linear in s by a formula that is accurate for small optical
path and for constant extinction for all optical paths (see
appendix). The accuracy of this spatial integration
scheme is limited by using only quantities from one
cell. To some extent the adaptive grid improves upon
this (see section 4a). Kuo et al. (1996) uses an 11th-
order spatial integration scheme involving many cells,
but the high accuracy is not realized because the angular
resolution limits the overall radiative transfer accuracy.
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There are two aspects to how the spatial resolution
affects the accuracy of the solution. The first is the
source function integration across each grid cell. The
adaptive grid cell generation is designed for this aspect.
The second is the interpolation of the source function
and initial radiance from the face grid points. In regions
where the source function is large this aspect will also
be taken care of by the adaptive grid, but where the
source function is small (such as clear sky) only the
resolution of the base grid is available to limit the ra-
diance interpolation error. It should be noted that the
error from the spatial integration is systematic, for ex-
ample, tending to produce extra reflected flux. This is
unlike a Monte Carlo method, for which averaging over
pixels will reduce the error in domain-averaged quan-
tities.

The SHDOM model allows either periodic or open
horizontal boundary conditions. With the periodic
boundary condition, discrete ordinate rays exiting one
side of the domain wrap around to the opposite side.
With the open boundary condition there is no reflection
from the boundaries. In this case the incident radiation
at the boundaries is determined by plane-parallel cal-
culations for the boundary columns. The reflection from
the lower boundary may be either Lambertian or a gen-
eral bidirectional reflectance factor (BRF). The BRF
model of Rahman et al. (1993) and Fresnel reflection
are included, and other models are straightforward to
implement. The radiance at the top boundary for down-
ward discrete ordinates is set (usually to zero), and the
radiance at the bottom boundary for upward discrete
ordinates is related to the reflected downwelling radi-
ance and any emission. The lower surface properties
may be variable, in which case the reflection function
parameters and temperature are specified on a regular
grid. The surface properties are bilinearly interpolated
to the adaptive grid points at the bottom of the medium.

The Picard iterations are a type of successive order
solution, and as such are slow to converge for optically
thick, conservative scattering media. To speed conver-
gence a sequence acceleration method based on geo-
metrical convergence is performed every other iteration.
The accelerated source function is an extrapolation of
the change

J9 (n) 5 J (n) 1 a(J (n) 2 J (n21)), (3)

where a is determined from the geometric convergence
properties. The solution iterations are stopped when the
solution criterion, which is the normalized rms differ-
ence between successive source function fields, is below
a specified value.

The radiance and source function are initialized be-
fore the solution iterations with an Eddington radiative
transfer solution on independent columns of the base
grid. A spectrally broadband integration may be per-
formed using a correlated k-distribution approach (e.g.,
Fu and Liou 1992). In this case there is a loop over
successive monochromatic radiative transfer calcula-

tions in the k distribution (see Fig. 1), starting with the
most absorbing k. The SHDOM algorithm is very ef-
ficient at k distributions because strong gaseous ab-
sorption causes the iterations to converge in just a few
iterations, and the previous k is used to initialize the
next. It is assumed that the absorbing gases making up
the k distribution are stratified and have no horizontal
variability.

The desired radiometric quantities are summed with
appropriate weights over the k distribution (if there is
one). Hemispheric fluxes are computed from the discrete
ordinate radiances during the solution process. Net flux-
es (in x, y, and z) and the mean radiance are simply
related to the lowest-order spherical harmonic radiance
terms. The source function for a specified direction may
be output. The radiance at specified angles and locations
is computed by integrating the source function through
the medium. For solar problems with the delta-M meth-
od, the TMS method of Nakajima and Tanaka (1988)
is used to compute the source function. This method
replaces the scaled, truncated Legendre phase function
expansion for the singly scattered solar radiation by the
full, unscaled phase function expansion. The multiply
scattered contribution still comes from the truncated
phase function. The TMS method is quite accurate for
the backscattering directions encountered in satellite re-
mote sensing, but not as accurate for directions in the
solar aureole region.

An ‘‘independent pixel’’ (IP) mode of operation may
be chosen. This mode calculates the radiative transfer
solution on separate columns (1D), or on separate planes
(2D) in either direction (XZ or YZ). For the 2D mode
of operation in a three-dimensional medium the plane
should be aligned with the solar azimuth, and this could
be called the ‘‘independent scan’’ (IS) method. The in-
dependent pixel mode is implemented by simply chang-
ing the neighbor cell pointers, so that the discrete or-
dinate rays treat the columns (IP) or planes (IS) as sep-
arate periodic domains.

3. Validation testing

It is necessary to validate a new model to assure that
it is relatively error free and does indeed solve the ra-
diative transfer equation. Furthermore, it is important
to characterize the accuracy and running time for a given
angular and spatial resolution. The approach taken here
is to show several validation tests that will also dem-
onstrate the performance of the algorithm. Three tests
of solar and thermal radiative transfer are shown: 1)
fluxes in plane-parallel geometries, 2) radiances and
fluxes from a 3D Gaussian field, and 3) fluxes from a
2D fractal field.

a. Independent pixel test

A good place to start validating a 3D model is
with the well-understood monochromatic plane-parallel
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FIG. 2. The albedo for independent pixel (1D) solar transfer. The
top panel shows the albedo and SHDOM albedo error (from a dou-
bling–adding model) as a function of optical depth. The lower two
panels show the final arrangement of adaptive grid points for two
cell-splitting accuracy levels. Since the columns are independent, the
adaptive grid cells are simply horizontal lines rather than boxes.

TABLE 1. Absolute accuracy of SHDOM for plane-parallel fluxes.

Type SplitAcc Npnt

Rms flux difference

Upwelling Downwelling

Solar (u09 5 608)
Solar (u0 5 608)
Solar (u0 5 608)

0.03
0.010
0.003

1494
2753
5284

0.00385
0.00139
0.00040

0.01014
0.00506
0.00134

Solar (u0 5 158)
Solar (u0 5 158)
Solar (u0 5 158)

0.03
0.01
0.003

1126
2231
4422

0.02570
0.00732
0.00221

0.02594
0.00833
0.00247

Thermal
Thermal
Thermal

1.0
0.3
0.1

801
1584
2927

0.030
0.018
0.010

0.032
0.008
0.003

problem. The independent pixel mode of SHDOM is
run on a 2D field of increasing extinction to compute
the upwelling and downwelling flux as a function of
optical depth. The input property grid and the internal
base grid have 100 columns horizontally (with optical
depth from 0 to 20), but only 2 vertically. The adaptive
grid provides all the needed additional vertical resolu-
tion. It is important to note that using the adaptive grid
for all the spatial resolution works only for 1D problems,
in which there is no error from interpolating radiances
incident on a cell between grid points. In 2D and 3D
some base grid resolution is required for good accuracy.

Two solar transfer situations and one thermal transfer
situation are run. Both have a Henyey–Greenstein phase
function with asymmetry parameter of 0.85, and no sur-
face reflection. For the solar cases the solar zenith angles
are 158 and 608, the scattering is conservative, the delta-
M method is used, and there are Nm 5 16 discrete zenith
angles. For the thermal cases the wavelength is 10 mm,
the single-scattering albedo is 0.1, the surface and me-
dium bottom temperature is 300 K, the medium top
temperature is 250 K, and Nm 5 32. A plane-parallel
doubling–adding model run with 32 streams computes
the outgoing fluxes for comparison (Evans and Stephens
1991). Plane-parallel validation tests including Lam-
bertian surface reflection have also been performed.

Figure 2 illustrates the albedo accuracy and the adap-
tive grid for the solar 1D transfer. The accuracy is rel-
atively constant except for small jumps caused by the
addition of adaptive grid cells. As the cell splitting ac-
curacy parameter is lowered by about a factor of 3, the
rms albedo error is reduced by a factor of 3. The adap-
tive gridpoint depiction in the figure shows how the
number of grid points necessary for a given accuracy
increases with optical depth. The grid points are pref-
erentially added to the top of the domain because that
is where the source function is changing most rapidly
from the incident solar beam. The grid spacing for op-
tical depth of 20 is four times smaller at the medium
top than near the center.

Table 1 lists the number of grid points and the rms
error in upwelling and downwelling flux for several in-
dependent pixel cases. The high angular resolution im-
plies that the accuracy is limited by the vertical reso-
lution. For the high sun case (u0 5 158) the absolute
flux accuracy is just about the same as the splitting
accuracy parameter, but for the low sun case the flux
accuracy is much better than the cell splitting parameter.
For the thermal case the flux error is also much smaller
than the splitting accuracy parameter. These examples
illustrates that while the accuracy will tend to increase
with reduction of the cell splitting parameter, there is
not a simple relationship between it and the desired
accuracy.
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FIG. 3. The upwelling flux from the Monte Carlo code and the
difference between SHDOM and Monte Carlo flux for the 3D Gauss-
ian test. The solar zenith angle is 458 and sun is on the left. The
SHDOM base grid is 20 3 20 3 11 and the number of discrete
ordinates is Nm 5 16 3 Nf 5 32.

b. 3D Gaussian test

The next two series of tests rely on validation by a
3D backward Monte Carlo radiative transfer code. The
code is based on the algorithm of O’Brien (1992) in-
cluding the use of quasi-random numbers (the Halton
sequence) and acceleration of the order of scattering
series. The medium properties vary trilinearly between
the grid points, which is computationally expensive, but
matches how the medium is defined in SHDOM.

The second test series is 3D solar and thermal transfer
in a Gaussian extinction field. The domain size is 2 3
2 3 1 (X–Y–Z) and the extinction varies as k 5 4.63
exp[24(x 2 1)2 2 4(y 2 1)2 2 16(z 2 ½)2] on a 20
3 20 3 11 grid. The peak optical depth is 2, which is
chosen to be small in order for the Monte Carlo code
to give reasonably accurate results. The solar radiative
transfer is for a wavelength of 1.65 mm and has a solar
zenith angle of 458. The thermal transfer test is at 10.7
mm and has a cloud temperature from 260 to 265 K
above a 295–K surface. In both cases the optical prop-
erties are computed with Mie scattering theory for liquid
cloud droplets with an effective radius of 10 mm and
an effective variance of 0.1. The surface is nonreflective
and there is no absorption other than the cloud droplets.
For each output location the backward Monte Carlo code
was run with 106 photons and 26 scatterings for the
solar case and 105 photons and 10 scatterings for the
thermal case. The adaptive grid is not used for SHDOM,
because the optical depth across the the base grid cells
is already quite small.

The zenith upwelling radiance and upwelling and
downwelling flux at locations with a horizontal spacing
of 0.2 are compared. The difference between Monte
Carlo and SHDOM is expressed as an rms difference
normalized by the mean of the quantity (e.g., flux) over
the 60 comparison points. Figure 3 shows the upwelling
flux and flux difference between SHDOM and Monte
Carlo for the solar case. The peak albedo is only about
0.06 because of the low optical depth and forward-scat-
tering phase function. The flux errors for this high an-
gular resolution case are of the order of 1% and show
a complex pattern. This is a result of flux at a point
depending on the radiance from all upwelling angles
and hence many locations, including the effects of the
periodic boundaries. In contrast, the error pattern for
radiance is very similar to the Gaussian optical depth
image.

The Gaussian comparison results are also shown in
Table 2, which lists the SHDOM accuracy for cases with
various angular and spatial resolution. One test to val-
idate the SHDOM algorithm is that as the angular and
spatial resolutions increase, the error should generally
decrease. The first part of the table shows how the error
decreases with angular resolution. In order to have a
few percent accuracy, moderate angular resolution (Nm

$ 8) is required. This is another illustration of how for
3D radiative transfer ‘‘two-stream’’ approaches do not

produce adequate local fluxes. As the angular resolution
is increased to (Nm 5 16), the error for fluxes in the
solar case does not keep decreasing. This is due to the
need for more spatial resolution to further improve the
accuracy. The lower part of the table shows how the
error changes with the spatial resolution. For the Nm 5



1 FEBRUARY 1998 435E V A N S

TABLE 2. Three-dimensional Gaussian SHDOM radiative transfer comparison with Monte Carlo. The rms difference over the field normalized
by the mean of the field is listed for upwelling flux, downwelling flux, and zenith upwelling radiance. The comparison is shown for various
angular and spatial resolutions for both the solar and thermal transfer cases.

Rms absolute difference/mean

Nx Ny Nz Nm Nf CPU

Solar transfer

Fup Fdown Rad

Thermal transfer

Fup Fdown Rad

Monte Carlo mean 0.0350 0.9616 0.0064 24.94 4.24 8.40

20
20
20
20
20
20

20
20
20
20
20
20

11
11
11
11
11
11

2
4
6
8

12
16

4
8

12
16
24
32

0.07
0.20
0.49
0.87
1.97
4.30

0.4220
0.1398
0.0765
0.0265
0.0109
0.0115

0.0544
0.0210
0.0088
0.0042
0.0038
0.0038

0.0991
0.0132
0.0252
0.0217
0.0121
0.0065

0.1691
0.0408
0.0168
0.0087
0.0038
0.0024

0.2553
0.0982
0.0653
0.0351
0.0160
0.0075

0.0387
0.0173
0.0077
0.0027
0.0003
0.0003

10
20
40
10
20
40

10
20
40
10
20
40

6
11
21

6
11
21

8
8
8

16
16
16

16
16
16
32
32
32

0.12
0.87
8.03
0.55
4.30

38.75

0.0313
0.0265
0.0249
0.0326
0.0115
0.0068

0.0071
0.0042
0.0032
0.0068
0.0038
0.0026

0.0212
0.0217
0.0254
0.0041
0.0065
0.0099

0.0085
0.0087
0.0081
0.0021
0.0024
0.0020

0.0357
0.0351
0.0395
0.0122
0.0075
0.0103

0.0021
0.0027
0.0029
0.0007
0.0002
0.0002

TABLE 3. Two-dimensional fractal comparison of SHDOM and SHSG with Monte Carlo. The rms flux difference over 16 locations normalized
by the mean of the fluxes is listed for upwelling and downwelling. The angular resolution is governed by L, M or Nm , Nf , and the spatial
resolution is determined by Nx , Nz , and the splitting accuracy. The resulting number of grid points (Npts), number of iterations, and CPU
time are listed.

Model Nx Nz

L
Nm

M
Nf

Split
Acc Npts

Iter-
ations

CPU
(sec)

Rms
Fup

Diff/Mean
Fdown

Solar transfer

SHSG
SHDOM
SHDOM
SHDOM

64
64
64
64

17
17
17
17

7
8
8
8

7
16
16
16

—
none
0.02
0.005

1088
1105
1540
4564

215
17
17
17

74
12
21
46

0.0173
0.0563
0.0281
0.0164

0.0162
0.0212
0.0167
0.0100

SHSG
SHDOM
SHDOM
SHDOM

128
128
128
128

33
33
33
33

15
16
16
16

15
32
32
32

—
none
0.02
0.005

4224
4257
4278
5803

423
17
16
17

2286
266
219
291

0.0047
0.0293
0.0236
0.0151

0.0038
0.0111
0.0105
0.0097

Thermal transfer
SHSG
SHDOM
SHDOM

64
64
64

17
17
17

15
16
16

15
32
32

—
none
0.2

1088
1105
1563

210
7

11

288
18
41

0.0075
0.0126
0.0111

0.0091
0.0322
0.0151

8 cases the error does not decrease much, because an-
gular resolution is the limitation. For Nm 5 16 there is
a significant increase in accuracy for the higher spatial
resolutions (except for the solar radiance). Based on the
change in Monte Carlo results with the number of pho-
tons, even with 106 photons per location, the solar trans-
fer comparison is probably affected by the Monte Carlo
noise. The computer time (CPU) in minutes for the solar
case is also listed. This may be compared with the 8455
min taken by the backward Monte Carlo code for the
two fluxes and one radiance at the 60 locations. This is
a rather unfair comparison for the Monte Carlo method,
as this implementation is not optimized for speed (e.g.,
it performs path integrations through a trilinearly vary-
ing extinction in each grid).

c. 2D fractal test

The last validation test is for outgoing fluxes from a
2D fractal field described in Evans (1993). The same
test configurations for the Nx 5 64, Nz 5 17 medium
is used here, but SHSG, SHDOM, and backward Monte
Carlo are compared. The medium has a mean optical
depth of 2.1 with a logarithmic standard deviation of
1.0, and a Henyey–Greenstein phase function with g 5
0.7. The delta-M scaling method is not used. The Monte
Carlo results are rerun with 3 3 105 photons and 26
orders of scattering for the solar case and 105 photons
and 10 orders of scattering for the thermal case. The
upwelling and downwelling flux are compared at 16
locations.

Table 3 lists the normalized rms flux difference from
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FIG. 4. (a) The 2D large eddy simulation cloud extinction. (b) The
adaptive grid for cell splitting accuracy of 0.03 (for solar flux of 1).
(c) The rms accuracy relative to the high resolution reference case
for seven upwelling radiances at 55-m spacing from the 2D LES
cloud medium. Various SHDOM spatial and angular resolutions are
compared.

Monte Carlo for SHDOM and SHSG. SHSG and
SHDOM have equivalent angular resolution and the
same spatial grid, though the adaptive grid is used for
SHDOM. For SHDOM with no adaptive grid points,
SHSG is substantially more accurate. This illustrates the
advantage of SHSG’s second-order finite differencing.
The adaptive grid is able to improve the accuracy of
SHDOM substantially. Although each iteration of
SHDOM takes more computation than SHSG, many
fewer are needed, so for this test SHDOM is 2–8 times
faster (see CPU times in Table 3).

4. Performance testing and examples

It is important to assess a new radiative transfer mod-
el’s computational efficiency and performance charac-
teristics, both in order to demonstrate its usefulness and
to understand the best way to operate the model. This
section illustrates how the adaptive grid affects the ac-
curacy of the results and shows examples of the capa-
bilities of SHDOM.

a. Adaptive grid accuracy

Two tests show the accuracy convergence of SHDOM
with the grid resolution (both base grid and adaptive
grid) for 2D solar transfer, illustrating important points
about the advantages and limitations of the adaptive
grid. The first is a realistic cloudy medium obtained
from cloud liquid water content output from a large eddy
simulation (LES) of stratocumulus performed by Moeng
(Moeng et al. 1996). For this test a 2D slice is selected
from the 3D cloud LWC field, and the vertical grid is
subsampled to produce a 64 3 21 grid with resolution
55 m by 50 m. The cloud droplet size distribution is
obtained by assuming a constant droplet concentration
of 50 cm23 and a gamma distribution with an effective
variance of 0.1. The optical properties are computed
with Mie theory at a wavelength of 1.65 mm.

Figure 4a displays the extinction field for the LES
test. The peak extinction is about 100 km21, and the
highest optical depth is 11.8. The SHDOM property file
has a tabulated phase function format, so phase func-
tions are defined at discrete effective radii with 0.5-mm
spacing. There is no absorption or scattering by gases.
The solar angle is 458 (on the left), and the surface
albedo is 0.06. Figure 4b shows the adaptive grid cell
structure. The adaptive grid points are primarily at cloud
top where the extinction is highest and where the direct
solar beam first interacts with the cloud. This is where
the source function is changing most rapidly.

The accuracy test is done by comparing SHDOM re-
sults at different resolutions to a very high resolution
reference case. The reference case has Nm 5 32 3 Nf

5 64 discrete ordinates and a base grid of Nx 5 512 3
Nz 5 161 points with no additional adaptive grid points.
Obtaining spatial resolution with only the base grid is
contrasted with gaining resolution from only the adap-

tive grid. The upwelling radiance from the medium at
seven angles (u 5 08, 158, 308, 458 for f 5 0, 1808) at
55-m spacing is compared. In addition the flux and mean
radiance at points on the input grid (Nx 5 64 3 Nz 5
21) are compared. Table 4 lists the rms accuracy and
CPU time for two angular resolutions and four spatial
resolutions. For the base grid cases the resolution is
increased by halving one of the grid spacings (X or Z)
at each step, while for the adaptive grid case it is done
by decreasing the splitting accuracy parameter a factor
of 3.
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TABLE 4. Two-dimensional large eddy simulated cloud comparison of SHDOM convergence. The rms differences in outgoing radiance,
upwelling internal flux, and internal mean radiance are normalized by the field mean. The angular resolution is governed by Nm, Nf , and
the spatial resolution is determined by Nx , Nz , and the splitting accuracy. The resulting number of grid points (Npts), number of iterations,
and CPU time are listed.

Nm Nf Nx Nz

Split
accuracy

CPU
(min) Npts

Rms diff/mean

Rad Fup Ī

8
8
8
8
8

16
16
16
16
16

64
64
64
64
64

21
21
21
21
21

0
0.1
0.03
0.01
0.003

0.30
0.39
0.64
1.08
3.68

1365
1538
2540
5619

16 076

0.076
0.064
0.029
0.029
0.029

0.153
0.102
0.030
0.020
0.020

0.057
0.040
0.015
0.012
0.011

16
16
16
16
16

32
32
32
32
32

64
64
64
64
64

21
21
21
21
21

0
0.1
0.03
0.01
0.003

1.03
1.51
2.58
5.22

20.63

1365
1623
2863
6564

19 461

0.087
0.054
0.015
0.013
0.014

0.151
0.086
0.021
0.011
0.010

0.063
0.039
0.012
0.008
0.007

8
8
8
8
8

16
16
16
16
16

64
64

128
128
256

21
41
41
81
81

0
0
0
0
0

0.35
0.53
1.26
2.67
5.50

1365
2665
5289

10 449
20 817

0.076
0.034
0.022
0.026
0.026

0.153
0.057
0.036
0.019
0.020

0.057
0.022
0.017
0.016
0.015

16
16
16
16

32
32
32
32

64
64

128
128

21
41
41
81

0
0
0
0

1.04
2.22
5.12

10.22

1365
2665
5289

10 449

0.087
0.034
0.013
0.012

0.151
0.054
0.028
0.011

0.063
0.024
0.015
0.010

16
32

32
64

256
512

81
161

0
0

21.84
437.2

20 817
82 593

0.011
—

0.009
—

0.007
—

The radiance error starts out at about 8% and reaches
1% for the highest resolution case. The CPU time (for
an HP 715/75) is basically proportional to the product
of the number of discrete ordinates and the number of
grid points. It starts out quite modest at 0.3 min, but
grows to be substantial. The characteristics of how the
accuracy varies with the number of grid points is best
seen in Fig. 4c, which shows the upwelling radiance
accuracy. The radiance accuracy for the even grid sat-
urates at 3% for Nm 5 8 discrete ordinates, but drops
to 1% for Nm 5 16 ordinates as the spatial resolution
increases. This illustrates the principle that the angular
and spatial resolution must be advanced in tandem to
optimally achieve a specified accuracy. The adaptive
grid accuracy saturates above the even grid value (for
Nm 5 16). Decreasing the cell splitting accuracy does
not keep on improving the spatial resolution. The adap-
tive grid shows its benefits before the saturation occurs,
with the radiance error dropping from 8.7% to 1.5% (for
Nm 5 16) when the splitting accuracy is 0.03 (for solar
flux of 1). At this sweet point the accuracy obtained for
a certain number of grid points with the adaptive grid
is substantially better than with the even grid. The num-
ber of adaptive grid points at this ‘‘optimal’’ point is
problem dependent, but generally the number of addi-
tional points would not be much greater than the number
of base grid points.

A similar convergence test is shown in Fig. 5 for a
2D extinction field derived from visible and thermal
infrared channels in a Landsat cumulus scene. The op-
tical depth is obtained from the visible channel and the
extinction varies vertically according to adiabatic LWC.

The cloud-top height is derived from the infrared chan-
nel and the cloud base from cloud shadows. The grid
spacing is 100 m over the 5 km by 3 km domain. A
single phase function for 10-mm effective radius drop-
lets at a wavelength of 0.63 mm is used. The Lambertian
surface albedo is 0.2 except the center 2 km, where it
is 0.4. The solar zenith angle is 458 and the clear sky
has no extinction. The adaptive grid method works ex-
tremely well in this case, reducing the radiance error
from 10% to 1.6% with only 40% more adaptive grid
cells than the base grid (Nm 5 16 angles and splitting
accuracy of 0.03). The equivalent accuracy using an
even grid requires more than three times the number of
grid points. The other radiometric quantities behave in
a similar manner. The even grid accuracy must even-
tually surpass that of the adaptive grid because spatial
resolution is required in the clear-sky regions for the
correct streaming of radiation.

b. Examples

To illustrate some of the capabilities of the SHDOM
model, three examples are presented. The first is for 2D
solar transfer in a uniform medium, but where the sur-
face albedo has a discontinuity. The optical properties
are for 0.5-mm sunlight in a haze represented by water
droplets with an effective radius of 0.5 mm. SHDOM
operates on a 3D medium where the optical depth in-
creases along one axis, so that in effect 21 separate 2D
cases are run at one time. Figure 6 shows the nadir
reflectance trace for four optical depths. The contrast of
the surface albedo boundary decreases as the optical
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FIG. 5. (a) The 2D Landsat cloud extinction. (b) The adaptive grid
for cell splitting accuracy of 0.03. (c) The rms accuracy relative to
the high resolution reference case for seven upwelling radiances at
100-m spacing.

FIG. 6. The 2D reflectance profile across a surface albedo disconti-
nuity for four different optical depths of visible haze.

depth increases, but there is also a horizontal smoothing
effect due to multiple scattering of the sunlight.

The second example demonstrates the ability of
SHDOM to compute broadband radiative transfer quick-
ly in multidimensional media. The LES cloud slice dis-
cussed in section 4a is used here but with the full vertical
resolution. The correlated k-distribution method, spe-
cifically the parameterization of Fu and Liou (1992), is
the basis of the broadband integration of the gaseous
line absorption. This k distribution (Fu and Liou 1992)
has six bands from 0.2 to 4.0 mm (centers at 0.45, 1.0,
1.6, 2.2, 3.0, 3.75 mm). A total of 54 monochromatic
transfer calculations (54 k’s) are required across the six
bands. A composite sounding appropriate for marine
stratocumulus is used to compute the volume absorption
coefficients for the k-distribution input to SHDOM.

Along with the 25-m spaced cloud levels from 400
to 850 m, two levels below and nine above (to 30 km)
are added for accurate solar absorption calculation.
Since the desired output is fluxes at the 0.4- and 0.9-
km levels, fine base grid resolution is required only
between those levels, because there is little scattering
outside with which the inhomogeneous radiation field
can interact. The cloud droplet scattering is computed
with Mie theory using the band center wavelength and
solar-weighted band-averaged index of refraction. Mo-
lecular Rayleigh scattering (Fu and Liou 1992) and an
ocean albedo of 0.06 are included. SHDOM is run with
Nm 5 8 3 Nf 5 16 discrete ordinates, which gives
adequate accuracy for flux and heating rates. The cell
splitting accuracy for the six bands is (10, 10, 5, 2, 2,
2), decreasing with the solar flux (the parameter is an
absolute measure, e.g., W m22). The largest adaptive
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FIG. 7. Simulated VIS and IR broadband solar flux along tracks
just below and above the cloud layer. The 2D cloud medium is from
an LES model (see Fig. 4). Curve VIS is for wavelengths 0.2–0.7
mm and IR for wavelengths 0.7–4.0 mm. The net flux convergence
is computed by subtracting the net fluxes at the two levels for each
pixel.

FIG. 8. Downward broadband longwave flux at the surface as a
function of distance from the center of a 2D Gaussian cloud. The
flux computed with periodic boundaries for 3-km and 12-km domains
is compared to that computed for open boundaries for the 3 km
domain. The endpoints of the open boundary case show the clear-
sky flux values.

grid has about 3300 points, compared with 1950 in the
base grid.

Figure 7 shows the outgoing visible and near IR 2D
broadband fluxes, as might be measured by aircraft ra-
diometers along a flight track in the solar plane. The
downwelling fluxes below the cloud have much more
variability than than the upwelling fluxes above the
cloud. This is due to the highly directional nature of
much of the downwelling radiation from the direct beam
and low orders of scattering. The net flux convergence
computed from the net fluxes above and below the cloud
averages almost zero for the visible band, but has large
negative excursions due to cloud side reflection.
SHDOM can be used to explore schemes that use the
visible net fluxes to correct the inferred infrared solar
absorption for 3D effects (Ackerman and Cox 1981).

The number of iterations for the broadband calcula-
tion was 361, which is less than seven iterations per
monochromatic calculation. The accurate 2D broadband
solar calculation took 12.2 min (on an HP 715/75 com-
puter). The successive order type iterations are very
efficient in a k-distribution calculation. The highly ab-
sorbing k’s complete in one iteration because little solar
flux reaches the cloud, moderate k converge rapidly be-
cause of the low single scattering albedo, and low ab-
sorbing k’s benefit from the initialization by the previous
field. SHDOM without initializing by the previous k
took 504 iterations and 14.4 min. The largest benefit of
the previous k initialization was for the visible band,
for which the number of iterations decreased from 130
to 76.

The last example compares the use of periodic and

open boundary conditions for broadband longwave ra-
diative transfer. The 2D medium contains a cloud from
1.0- to 2.0-km altitude. The liquid water content is
Gaussian in X with full width half maximum of 1.0 km
and linear in Z, with a peak of 0.2 g m23. The broadband
transfer is performed using Fu and Liou (1992) long-
wave k distribution of 12 bands (67 total k’s) for a stan-
dard midlatitude atmosphere. The cloud-top temperature
is 280 K, cloud base is 285 K, and the black surface is
295 K. The cloud optical properties are determined from
Mie calculations for each band assuming a droplet con-
centration of 200 cm21. The grid spacing for the cloud
layer is 0.1 km, and there are five additional levels below
and seven above (to 10 km).

The SHDOM output shown is the broadband flux at
the surface, as might be observed by a pyranometer as
these Gaussian cloud streets advect over. Figure 8 shows
the downwelling longwave flux for three boundary con-
dition cases. The flux is significantly higher when as-
suming a 3-km-wide periodic domain, as compared to
a 12-km-wide domain (for which case open and periodic
boundaries have the same fluxes). This is due to the flux
contributions from the periodic array of clouds at 3 km
spacing. For the 12-km domain the periodic clouds do
not contribute significantly. The flux trace for the 3-km
domain, open boundary condition case agrees very well
with the 12-km domain result. For Nm 5 16 3 Nf 5
32 discrete ordinates and a cell splitting accuracy of 1.0,
the broadband calculation took 16.8 min (203 iterations)
for the 3-km open domain and 62.1 min for the 12-km
periodic domain. This illustrates that the open boundary
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condition may be used to substantially reduce the do-
main size and hence computation for isolated cloud sit-
uations.

5. Summary and conclusions

SHDOM is an algorithm and computer program used
to model general three-dimensional atmospheric radia-
tive transfer. Unpolarized monochromatic or broadband
transfer may be computed with either or both solar and
thermal radiation. Any combination of radiances, fluxes,
or net flux convergence (heating rate) may be output.

The radiative transfer source function (from which
any radiative quantity may be derived) is computed on
a discrete spatial grid with the angular distribution rep-
resented in a spherical harmonic series. The spherical
harmonic representation saves memory because with the
adaptive series truncation only the required number of
spherical harmonic coefficients are stored at each grid
point. It is also faster to compute the source function
using spherical harmonics than with discrete ordinates.
On the other hand, the streaming of radiation is best
modeled using the integral form of the radiative transfer
equation along discrete ordinates.

The iterative solution method 1) transforms the source
function to discrete ordinates, 2) integrates the source
function along discrete ordinates to compute the radi-
ance field, 3) transforms the discrete ordinate radiance
to spherical harmonics, and 4) computes the source
function from the radiance field in spherical harmonics.
This is a successive order of scattering solution method,
except that the source function is initialized with a 1D
Eddington solution. A sequence acceleration method is
implemented to speed convergence in optically thick,
scattering media.

An adaptive grid is implemented to add grid points
where they are most needed during the solution itera-
tions. The criterion for splitting a cell in half is based
on the difference in source function across the cell. The
adaptive grid controls the error in the source function
integration, but not the interpolation error of the cell
entering radiance and source function. To deal with the
interpolation error, adequate resolution is needed in the
initial regular ‘‘base’’ grid. The angular resolution is
determined by the number of discrete ordinates (which
also determines the number of spherical harmonic
terms).

Good radiance accuracy for solar problems with high-
ly peaked phase functions is assured by using the delta-
M scaling method along with the untruncated phase
function single-scattering solution (Nakajima and Ta-
naka 1988). Broadband transfer is accomplished with a
sum over a k distribution of gaseous absorption lines.
This is very efficient in SHDOM because the highly
absorbing k’s converge quickly. Independent pixel (1D)
and independent scan (2D) modes are available for test-
ing these approximations to 3D transfer.

Verification is shown for solar and thermal radiative

transfer in three situations: 1) independent columns in
a linearly increasing optical depth field, 2) a 3D Gauss-
ian extinction field with a Mie phase function, and 3)
a 2D fractal extinction field. Validation is provided with
doubling–adding and backward Monte Carlo models.
Tests of 2D solar radiative transfer in stratocumulus and
broken cumulus cloud fields illustrate how the error de-
creases with increasing angular and spatial resolution.
The spatial and angular resolution must be increased
together to achieve a desired accuracy with minimum
computer resources. The spatial resolution is increased
using the regular base grid or the adaptive grid accuracy
parameter. Increasing the resolution with the adaptive
grid alone decreases the error rapidly at first, but then
much more slowly with the number of grid cells, while
using the base grid alone decreases the error more
steadily. This shows how the base grid and the adaptive
grid must be used in conjunction for optimal results.

The capabilities of SHDOM, such as handling spa-
tially varying surface properties and open and periodic
boundary conditions, are illustrated. Broadband short-
wave and longwave radiative transfer examples are
shown. The broadband solar transfer is computed for a
2D stratocumulus cloud in a 64 3 30 gridpoint domain.
A correlated k distribution with six bands and 54 k’s is
used, which takes only 12 min to run on a workstation
computer. This implies that SHDOM is the first explicit
radiative transfer model efficient enough to perform
broadband 3D atmospheric radiative transfer for sig-
nificant sized domains. When many radiative quantities
are desired from a 3D transfer simulation, SHDOM
should be much faster than Monte Carlo models.

The SHDOM model, a k-distribution program, and a
program to compute cloud optical properties, all written
in FORTRAN, are being distributed. Example input files
and UNIX scripts are included. The distribution and
associated information are available on the Internet
World Wide Web at URL http://nit.colorado.edu.

Potential applications of SHDOM include the follow-
ing.

R Comparing with other multidimensional models to de-
termine the situations for which each is most suited.

R Comparing 1D, 2D, and 3D approximations for in-
homogeneous radiative transfer.

R Studying effects of cloud inhomogeneities on satellite
remote sensing of cloud properties and inferred fluxes.

R Exploring heterogeneity effects on aircraft flux ob-
servations of clouds and developing corrections for
cloud variability.

R Investigating whether 3D radiative transfer can cause
real or apparent ‘‘anomalous’’ solar absorption in
clouds.

R Determining effects of spatial variations in surface
albedo on aerosol and cloud retrievals and radiative
forcings.

R Improving the theory for how radiation flows in re-
alistic cloud fields.
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R Developing radiative parameterizations for climate
models and cloud resolving models.

The SHDOM model should have the efficiency and flex-
ibility to be a significant tool to investigate the above
issues and many others in the field of atmospheric ra-
diation.
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APPENDIX

SHDOM Algorithm Details

a. Spherical harmonic transforms

The SHDOM algorithm computes the radiative trans-
fer equation source function in spherical harmonics
space Jlm, which is related to the source function in
angular coordinates by

J(m, f) 5 Y (m, f)J , (A1)O lm lm
lm

where Ylm are orthonormal real-valued spherical har-
monic functions. In the course of solving the radiative
transfer equation, SHDOM transforms between the dis-
crete ordinate and spherical harmonic representations.
The set of discrete ordinates implemented are a reduced
Gaussian grid. There are Nm Gaussian quadrature cosine
zenith angles, m j, and N̂f evenly spaced azimuth angles,
fk. The discrete ordinate set is reduced by having fewer
azimuth angles at larger |m| (near the poles), so N̂f de-
pends on j. For 2D radiative transfer with symmetry
around f 5 0, the fk range from 0 to p, while in the
more general case they range from 0 to 2p with a max-
imum number of fk of Nf. The reduced Gaussian grid
of discrete ordinates has about 70% of the number of
angles of a regular Gaussian grid (Nf 3 Nm).

The spherical harmonic representation has the merid-
ional index l between 0 and L and the Fourier azimuthal
mode m from 0 to M. If M 5 L then the spherical
harmonic truncation is triangular, which has equal an-
gular resolution in all directions. The spherical harmonic
truncation is set by the number of discrete ordinates
according to L 5 Nm 2 1 and M 5 Nf/2 2 1, which
assures that the spherical harmonics are orthogonal
when their product is integrated. For 2D transfer only
cosine azimuth modes are needed, while for 3D both
cosine and sine modes are needed. The Fourier modes
are implemented by having m , 0 refer to sine modes

and m . 0 refer to cosine modes. For M 5 L the number
of spherical harmonic terms is Nlm 5 (L 1 1)2 for both
cosine and sine modes and Nlm 5 (L 1 1)(L/2 1 1) for
only cosine modes.

The source function (Jlm) is transformed to discrete
ordinates by

M L

J 5 u(mf ) L (m )J , (A2)O Ojk k lm j lm
m52M l5|m|

where L lm(m) are the normalized associate Legendre
functions, and u(mf) 5 cos(mf) for m $ 0 and u(mf)
5 sin(mf) for m , 0. For 2D situations with symmetry
in azimuth only the non-negative m modes are used.
The transform coefficients L lm(m j) and u(mfk) are pre-
computed and stored. The functions L lm(m) are com-
puted as a set (all desired l and m) for a particular mj

using upward l recursion with normalization. The dis-
crete ordinate radiance Ijk is derived from the source
function Jjk by integrating the radiative transfer equa-
tion. The discrete ordinate radiance at each grid point
is transformed to spherical harmonic space according to

ˆN Nm f,j

I 5 w L (m ) ŵ u(mf )I , (A3)O Olm j lm j jk k jk
k51j51

where wj are the Gauss–Legendre quadrature weights
and ŵjk are the azimuthal integration weights normalized
appropriately.

The explicit form of the transforms illustrates how
the azimuthal and zenith angle parts partially separate,
leading to a substantial decrease in the number of op-
erations. For more than about 12 azimuthal angles an
FFT is used for the azimuthal Fourier transform (the
FFT does not have to be a power of 2). If there are N
discrete ordinates then the number of floating point op-
erations for both transforms together is approximately
9N 3/2, and less when using the azimuthal FFT (asymp-
totically ;3N 3/2). The source function computation has
only of order N operations.

The computation of the source function is very fast
in spherical harmonic space because the scattering in-
tegral reduces to a simple weighting by the Legendre
phase function coefficients xl for each l. The Legendre
coefficients are defined by

NL

P(cosQ) 5 x P (cosQ), (A4)O l l
l50

where Pl are Legendre polynomials and P(cosQ) is the
phase function at the scattering angle Q. At each grid
point the source function is computed from the radiance
according to

vxlJ 5 I 1 S , (A5)lm lm lm2l 1 1

where v is the single scattering albedo, and Slm is the
solar pseudosource and/or thermal source. The thermal
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source is isotropic and so involves just the first spherical
harmonic term:

Slm 5 (1 2 v)B(T)(4p)1/2dl0dm0, (A6)

where B(T) is the Planck function, either monochro-
matic or band integrated as appropriate. The solar pseu-
dosource of diffuse radiation is

F vx0 l2t sS 5 e Y (m , f ) , (A7)lm lm 0 0m 2l 1 10

where F0 is the solar flux on a horizontal plane, m0 is
the cosine of the solar zenith angle, f0 is the solar
azimuth angle, and t s is the optical path from the grid
point to the upper domain boundary along the solar
direction. Computing the source function in the trun-
cated spherical harmonics space acts to smooth the dis-
crete ordinates solution, thereby reducing ray effects,
which are commonly a problem with the S-N method
(Gerstl and Zardecki 1985; Chai et al. 1993).

The angular resolution in the model, which is gov-
erned by the spherical harmonic truncation level, is lo-
cally adaptive. The number of terms in the expansion
of the source function is based on which terms are above
a specified threshold. This flexible storage scheme is
implemented by having a pointer to the memory location
containing the beginning of each grid point’s spherical
harmonic expansion. The radiance field also has an
adaptive spherical harmonic truncation, but this is taken
to be a few more terms than the source function trun-
cation so that the angular resolution may increase during
the solution iterations. The primary benefit of the adap-
tive truncation is a savings in memory storage.

b. Adaptive grid

The accuracy of the radiative transfer solution is gov-
erned in part by the resolution of the spatial grid at
which the source function and radiance are defined. The
accuracy of the source function integration depends on
how well the source function and extinction variability
are represented with the grid. If the optical path across
a grid cell (in all directions) is small compared to one,
then the integration across that cell will be accurate.
This criterion, however, is too conservative for the cen-
ter of optically thick media where the source function
changes slowly. Thus for optically thick or highly vari-
able media it is useful to have the spatial resolution vary
across the medium.

The base grid does not need to be the same resolution
as the input optical property grid, though it often is.
The base grid is evenly spaced horizontally but may be
arbitrarily spaced vertically. The input properties (ex-
tinction, single-scattering albedo, phase function, and
temperature) are trilinearly interpolated from the input
property grid to the base grid (actually the product of
the extinction and single-scattering albedo, etc., are in-
terpolated). If a k distribution is being used, then the
vertical gaseous absorption profile is interpolated and

the volume extinction for the particular k is added to
the optical properties of the medium. If the delta-M
scaling method (Wiscombe 1977) is specified, then the
optical properties are scaled before their use. For solar
problems the direct beam flux is computed for each grid
point by tracing the path to the sun through the input
property grid. The exact formula for the integral of a
trilinearly interpolated extinction field is used for the
optical path across each grid cell.

The adaptive grid evolves from the base grid by sub-
dividing or ‘‘splitting’’ cells where more resolution is
judged to be needed. The data structure for the adaptive
grid is a tree structure with a root starting at each base
grid cell. At each node a cell has pointers to its parent
cell, perhaps two child cells, six neighboring cells, and
to the eight grid points that the cell borders. The neigh-
bor pointers are required in order to trace rays through
the medium. There is an indication of whether the neigh-
boring cell has been subdivided so that there are several
bordering cells, or that there is no neighboring cell in
that direction (a domain boundary). Only the end nodes
of the tree (the highest resolution) are used in the ra-
diative transfer computation. A fair amount of com-
plexity is required to use the cell structure during ray
tracing and to update the structure during cell splitting.

The criterion for splitting cells is based on how much
the source function times extinction changes across a
cell. A cell may be split in half in either of the three
Cartesian directions, depending on whether any of them
exceed the splitting criterion. The source function de-
pends on angle, of course, but a single criterion is re-
quired, so it uses the average difference over all angles:

2p 11 1
(2)|DJ| 5 [k J (m, f)E E 25k 4p 0 21

1/2

(1) 22 k J (m, f)] du df (A8)1 6
1/2

1 1
(2) (1) 2|DJ| 5 [k J 2 k J ] , (A9)O 2 lm 1 lm5 6k 4p lm

where J (i) and ki are the source functions and extinction,
respectively, at two grid points bounding a grid cell. To
determine how the source function difference might af-
fect the radiance, the source function difference is mul-
tiplied by a function of the optical depth across a grid
cell. Thus the cell-splitting criterion is

C 5 |DJ|[1 2 e2t], (A10)

where the average optical path across the grid grid cell
is t 5 kd, k is the average extinction, and d is the
distance between the two grid points in question. The
criterion is averaged over the four edges of a cell (in
3D) that cross a potential cell splitting plane.

All end-node cells are tested for cell splitting in each
direction (X, Y, Z). The cells are sorted by the maximum
(over X, Y, Z) of the cell-splitting criterion. Those cells
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with the highest criterion above a certain value are split
first, which assures that the most appropriate cells are
divided when memory to create new cells is exceeded.
After these cells are split, the adaptive grid is examined
to find more cells to divide to make the grid ‘‘smoother.’’
A cell is divided if it has smaller cells on opposite sides
or a neighboring cell has a grid spacing more than three
times finer (Karman 1995). The new cells that were
formed by splitting may themselves be divided during
one solution iteration. Thus a cell that needs to be split
in two directions (say X and Z) will not have to wait
for the next iteration. As the solution iterations proceed,
the cell splitting accuracy is gradually lowered to the
desired final cell-splitting accuracy, and so more grid
points are added at each iteration during this process.
This procedure is computationally faster than achieving
the full resolution in one iteration.

After each cell is divided, up to four new grid points
bordering the cell are added (if not existing already).
The medium properties are trilinearly interpolated from
the property grid, using the same procedure as for the
base grid. The spherical harmonic representation of the
radiance is linearly interpolated between the two old
points of the edge, and from this the source function
for the new point is computed.

Tests have shown that the addition of adaptive grid
points does not guarantee improved accuracy. The finite
grid solution method apparently is sensitive to the abrupt
variations in grid density that are implicit with an adap-
tive grid. This criterion for dividing cells has been found
to be useful in many cases, but will not always be the
optimal method of cell splitting.

c. Integration along discrete ordinates

The SHDOM algorithm solves for the source function
J of the radiative transfer equation. The differential form
of the radiative transfer equation for the radiance I(s)
in the direction of a ray at a distance s along the ray is

dI(s)
5 2k(I 2 J ), (A11)

ds

where k is the volume extinction coefficient. The inte-
gral solution for the radiance, I(s), at distance s, in terms
of the initial radiance I(0) and the extinction and source
function along the path is given in 2.

The radiative transfer equation is integrated for each
of the discrete angles assuming that the source function
field is fixed during the integration. The transform from
spherical harmonics to discrete angles produces the
source function J(xi, mj, fk) at the gridpoint locations
xi for angles (mj, fk). The source function is integrated
backward from each grid point to a grid cell face that
has valid (known) radiances at its bounding grid points.
The radiance is interpolated between the surrounding
grid points using bilinear interpolation to give the initial
radiance for the integration. Usually the ray must be
traced back across just one grid cell before getting a

known radiance. To reduce the error from interpolating
the radiance at the grid cell face, the ray may be traced
backward until the transmission falls below some min-
imum specified value. The backward ray tracing, as con-
trasted with forward tracing, is necessary for imple-
mentation of the adaptive grid, because it guarantees
that a radiance value will be computed for every grid
point.

The radiance exiting a grid cell depends on the source
function and extinction variation across the grid cell and
the initial radiance on the other side of the cell. To find
an efficient yet accurate approximation to the grid cell
path integral, the variation of the extinction and source
function within the grid cell are approximated from the
values at the entering (k0 and J0) and exiting (k1 and
J1) points. The extinction is assumed to vary linearly
with distance across the grid cell from s9 5 0 at the
entering location to s9 5 s at the exiting location:

s9
k(s9) 5 k 1 (k 2 k ) . (A12)0 1 0 s

With the assumption of linear variation of extinction,
the optical path across the grid cell is

s 1
t 5 k(s9) ds9 5 (k 1 k )s. (A13)E 0 120

Because the product of the extinction and the source
function appears in the integral form of the radiative
transfer equation, this product, rather than the source
function, is assumed to vary linearly across the grid cell,
according to

s9
J(s9)k(s9) 5 J k 1 (J k 2 J k ) . (A14)0 0 1 1 0 0 s

The entering and exiting values of the extinction k and
extinction/source function product Jk are computed us-
ing bilinear interpolation of the four gridpoint values of
the faces pierced by the ray.

There is no simple and efficiently computed form of
(A2) for the case where both the extinction and extinc-
tion/source function product vary linearly across the
cell. If the extinction is constant and the source function
is linear, then the exiting radiance is

2t 2tI(s) 5 e I(0) 1 (1 2 e )

2t1 e
3 J 1 (J 2 J ) 2 . (A15)1 0 1 2t1 2[ ]t 1 2 e

The solution for linear extinction and linear extinction/
source function product can be expanded to first order
in the path distance s, resulting in

2t 2tI(s) 5 e I(0) 1 (1 2 e )

J k 1 J k k J k 2 k J k0 0 1 1 0 1 1 1 0 03 1 s . (A16)[ ]k 1 k 6(k 1 k )0 1 0 1

This expansion solution is not accurate for large optical
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path across a grid cell (t), and in fact is unstable in the
successive order iterations. Therefore, the expression for
the path integral across a grid cell uses the expansion
for linear extinction solution (A16) for t # 2, and for
t . 2 a combination of the expansion and the constant
extinction solution (A15):

2t 2tI(s) 5 e I(0) 1 (1 2 e )

1
3 J k 1 J k 1 (k J k 2 k J k )0 0 1 1 0 1 1 1 0 0[k 1 k0 1

2t2 2 2e
3 1 2 1 .

2t1 2]k 1 k t 1 2 e0 1

(A17)

This has the correct small optical path solution and is
correct for constant extinction or constant source func-
tion for all optical paths. For the integration formula to
have the correct asymptotic behavior for t → ` when
k0 ± k1, the cell entering extinction is adjusted toward
the exiting extinction by 5 k1 1 4(k0 2 k1)/t . Thek90
cell integration formulas are somewhat complicated. A
simpler integration scheme used in the DOM (Sanchez
et al. 1994) was also tried; the 25% faster execution did
not justify the considerably lower accuracy.

The order in which grid points are selected for the
discrete ordinate radiance integration is chosen to min-
imize the number of cells that are traced back until a
known radiance is found. Thus, for downwelling ordi-
nates, grid points on the bottom of the top row of cells
are done first. The particular ordering for this ‘‘sweep-
ing’’ through the grid depends on the octant of the dis-
crete ordinate. The order of the sweeping is precom-
puted for a given grid to speed the integration.

d. Boundary conditions

There is no reflection from the top of the domain,
though isotropic incident radiance may be specified. The
upwelling radiation from the bottom of the domain is
the sum of reflected and emitted radiation. For the case
of a general bidirectional reflection function r(m, f, m9
f9), the boundary radiance at a grid point is

2p 11
I(m, f) 5 {r(m, f, 2m9, f9)I(2m9, f9)E Ep 0 0

1 [1 2 r(m, f, 2 m9, f9)]

3 B(T )}m9 dm9 df9, (A18)s

where I(2m9, f9) is the incident downwelling radiance
and B(Ts) is the Planck function at the surface temper-
ature Ts. The direct solar flux at the surface is included
in the incident radiance. For a specular surface (e.g.,
Fresnel), the integration cannot be used because there
may not be an incident discrete ordinate corresponding
to the upwelling direction. In this case interpolation

(based on cubed inverse distance) between incident dis-
crete ordinates is used. The solar direction must be along
a discrete ordinate direction, so that the reflected direct
beam is not lost. For a Lambertian surface, r is simply
the albedo, though separate routines are used for im-
proved efficiency. The parameters specifying the re-
flectance function at each boundary grid point are bi-
linearly interpolated from those in the input surface file.
The general surface reflection routines are designed to
simplify adding other reflection types.

The horizontal boundary conditions may be specified
(independently for X and Y directions) as periodic or
open. The periodic boundaries are implemented by hav-
ing the boundary cells point to neighbors on the opposite
side. As a ray is traced back from cell to cell, it will
then automatically wrap around the domain. For sim-
plicity in coding, the upper boundaries in X and Y have
an extra plane of grid points that duplicates the lower
boundary grid points. The open horizontal boundary
conditions are implemented by letting the lower and
upper boundary cells behave as ‘‘independent scans.’’
This is done by having the cells along the boundary
point to themselves rather than their interior neighbors.
By starting the cell integration ‘‘sweeping’’ process with
the boundary cells, the boundary planes become inde-
pendent of the interior cells, and the radiance at their
grid points serves as the boundary radiance for the in-
terior points. For 2D (X–Z) transfer this means that the
upper and lower X boundary columns have plane-par-
allel radiance values.

e. Solution method

The solution method consists of iterations (section
2d) in which the spherical harmonics source function is
transformed to discrete ordinates, which is is integrated
to obtain the discrete ordinates radiance, which is then
transformed back to spherical harmonics. The iterations
are stopped when the solution criterion, which is the
normalized rms difference between successive source
function fields, is below a specified value. To save mem-
ory, phases 1–3 of the iterations are combined by doing
all three phases inside the loop over the discrete ordinate
zenith angles. Therefore, the discrete ordinate version
of the source function/radiance must be stored only for
Nf ordinates for each grid point.

Since the solution method is like an order of scattering
approach, convergence is slower for optically thicker or
more scattering media. The sequence acceleration meth-
od (A3), which speeds convergence for these situations,
is based on the observed geometric convergence of the
solution. Because the source function difference
changes its pattern each iteration, a 1D geometric ac-
celeration approach does not work well. Instead a 2D
approach is taken. Imagine three noncolinear points in
a plane corresponding to the source function vectors (J)
for three successive iterations, so u (n21) 5 J (n21) 2 J (n22)

and u (n) 5 J (n) 2 J (n21) are two adjacent vectors. The
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ratio of the lengths of the two vectors is the convergence
rate r, and the angle c between them is a measure of
how much the pattern in u is changing:

(n) (n21) (n)|u | u ·u
r 5 cosc 5 . (A19)

(n21) (n21) (n)|u | |u | |u |

Assuming the sequence converges geometrically, the
maximum distance of the geometric spiral along the
u (n21) vector is used for the acceleration distance:

11p/(2c)1 2 r cosc 1 r
a 5 2 1. (A20)

21 1 r 2 2r cosc

The acceleration extrapolation is only done every other
iteration so there are valid u (n21) and u (n) . This solution
sequence acceleration method substantially reduces the
number of iterations required for conservative scattering
situations, though it sometimes causes the solution cri-
terion to not decrease monotonically.

If the acceleration method is implemented, then the
primary memory requirements are for three large arrays
(radiance, source function, and source function differ-
ence) containing the spherical harmonic expansions at
every grid point. The source function difference array
is not needed if the acceleration method is not used.
The maximum memory needed for Nm 5 8, Nf 5 16
angular resolution is 266 Npts, where Npts is the number
of grid points.

f. Computing radiometric quantities

Hemispheric fluxes are computed at every grid point
during the solution process. The discrete ordinate ra-
diances are summed according to

ˆN /2 Nm f,j

6F (x ) 5 w ŵ |m |I , (A21)O Oi j jk j ijk
j51 k51

where the zenith angle sum (j) is over either the upward
or downward hemisphere ordinates.

The rest of the output quantities are computed from
the spherical harmonic representation of the radiance or
source function. One output mode, useful for studying
radiative energy flows, lists gridpoint values of the mean
radiance and net flux vector, which are

1
I 5 I , (A22)l50,m501/2(4p)

1/2 1/24p 4p
F 5 2 I F 5 2 Ix 1,1 y 1,211 2 1 23 3

1/24p
F 5 I . (A23)z 1,01 23

In addition, the collimated (solar) mode includes the
direct beam contribution:

2t sF e0I 5 , (A24)( 4pm0

F F0 02t 2ts sF 5 e sinu cosf F 5 e sinu sinfx( 0 0 y( 0 0m m0 0

2t sF 5 2F e . (A25)z( 0

The net flux convergence, which is related to the heat-
ing rate, is computed from the volume absorption co-
efficient k(1 2 v), the mean intensity, and the thermal
and/or solar source, using

F0 2t s2= ·F 5 k(1 2 v) 4pI 1 e 2 4pB(T ) .net [ ]m0

(A26)

The radiance at specified angles and locations is com-
puted by integrating the source function through the
medium. The spherical harmonic representation of the
source function is transformed to the desired viewing
direction (m, f). For solar problems with the delta-M
method, the TMS method of Nakajima and Tanaka
(1988) is used to compute the source function. This
method replaces the scaled, truncated Legendre phase
function expansion for the singly scattered solar radi-
ation by the full, unscaled phase function expansion.
The multiply scattered contribution still comes from the
truncated phase function. The source function at the
specified direction is then

F0 92t sJ(m, f) 5 J9 Y (m, f) 2 eO lm lm[ mlm 0

v9x9l Y (m , f )Y (m, f)lm 0 0 lm ]2l 1 1
92t sF e v01 x P (cosQ), (A27)O l lm 1 2 f v 4p l0

where the primed quantities are delta-M scaled with
truncation fraction f and Pl(cosQ) is the lth Legendre
polynomial evaluated at the scattering angle between
(m0, f0) and (m, f). The last term of (A27) is summed
over all the coefficients in the input Legendre expansion
of the phase function. The TMS source function is in-
tegrated with the delta-M scaled extinction.

The radiance at the viewing direction is obtained us-
ing the integral form of the radiative transfer equation
(2) with the above source function. The path through
each grid cell is divided into segments with optical path
less than 0.1, the extinction and extinction/source func-
tion product is trilinearly interpolated, and (16) used to
compute the radiance contribution from each segment.
Radiance values at many locations are calculated for a
single viewing angle using one source function field.

When using a k distribution, the output radiometric
quantities are summed over the distribution using the
weights associated with each k.
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The complete source function, grid structure, and oth-
er items needed to compute radiometric quantities may
be output to a save file. Later, the save file may be input
to the SHDOM model to compute more radiometric
quantities or to perform more iterations to reach a higher
accuracy.
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